On Riemann-Liouville integral of ultra-hyperbolic type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

On q–fractional derivatives of Riemann–Liouville and Caputo type

Abstract. Based on the fractional q–integral with the parametric lower limit of integration, we define fractional q–derivative of Riemann–Liouville and Caputo type. The properties are studied separately as well as relations between them. Also, we discuss properties of compositions of these operators. Mathematics Subject Classification: 33D60, 26A33 .

متن کامل

Säıd Abbas and Mouffak Benchohra UNIQUENESS RESULTS FOR FREDHOLM TYPE FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL EQUATIONS

In this paper we study the existence and uniqueness of solutions of a certain Fredholm type Riemann-Liouville integral equation of two variables by using Banach contraction principle.

متن کامل

Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator

*Correspondence: [email protected] 1Luleå University of Technology, Luleå, 971 87, Sweden 2Narvik University College, P.O. Box 385, Narvik, 8505, Norway Full list of author information is available at the end of the article Abstract We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n ∈ N. Some new Hardy-type inequalities for this operator are proved and dis...

متن کامل

Liouville-Type Theorems for Some Integral Systems

/2 ( ) ( ) u u        where  is the Fourier transformation and  its inverse. The question is to determine for which values of the exponents pi and qi the only nonnegative solution (u, v) of (1) and (2) is trivial, i.e., (u; v) = (0, 0). When 2   , is the case of the Emden-Fowler equation 0 , 0     u u u k in N  (5) When ) 3 )( 2 /( ) 2 ( 1      N N N k , it has been prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 1964

ISSN: 0386-5991

DOI: 10.2996/kmj/1138844888