On Riemann-Liouville integral of ultra-hyperbolic type
نویسندگان
چکیده
منابع مشابه
Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملOn q–fractional derivatives of Riemann–Liouville and Caputo type
Abstract. Based on the fractional q–integral with the parametric lower limit of integration, we define fractional q–derivative of Riemann–Liouville and Caputo type. The properties are studied separately as well as relations between them. Also, we discuss properties of compositions of these operators. Mathematics Subject Classification: 33D60, 26A33 .
متن کاملSäıd Abbas and Mouffak Benchohra UNIQUENESS RESULTS FOR FREDHOLM TYPE FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL EQUATIONS
In this paper we study the existence and uniqueness of solutions of a certain Fredholm type Riemann-Liouville integral equation of two variables by using Banach contraction principle.
متن کاملSome new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator
*Correspondence: [email protected] 1Luleå University of Technology, Luleå, 971 87, Sweden 2Narvik University College, P.O. Box 385, Narvik, 8505, Norway Full list of author information is available at the end of the article Abstract We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n ∈ N. Some new Hardy-type inequalities for this operator are proved and dis...
متن کاملLiouville-Type Theorems for Some Integral Systems
/2 ( ) ( ) u u where is the Fourier transformation and its inverse. The question is to determine for which values of the exponents pi and qi the only nonnegative solution (u, v) of (1) and (2) is trivial, i.e., (u; v) = (0, 0). When 2 , is the case of the Emden-Fowler equation 0 , 0 u u u k in N (5) When ) 3 )( 2 /( ) 2 ( 1 N N N k , it has been prove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1964
ISSN: 0386-5991
DOI: 10.2996/kmj/1138844888